Convexification-based globally convergent numerical method for a 1D coefficient inverse problem with experimental data
نویسندگان
چکیده
To compute the spatially distributed dielectric constant from backscattering computationally simulated ane experimentally collected data, we study a coefficient inverse problem for 1D hyperbolic equation. solve this problem, establish new version of Carleman estimate and then employ to construct cost functional, which is strictly convex on bounded set an arbitrary diameter in Hilbert space. The strict convexity property rigorously proved. This result called convexification theorem it central analytical paper. Minimizing functional by gradient descent method, obtain desired numerical solution problems. We prove that method generates sequence converging minimizer starting point set. also confirming converges true as noise measured data regularization parameter tend zero. Unlike methods, are based optimization, our globally sense delivers good approximation exact without requiring initial guess. Results studies both presented.
منابع مشابه
A Globally Convergent Numerical Method for a Coefficient Inverse Problem
A survey of recent results of the authors is presented. This survey is short due to space limitations. A Coefficient Inverse Problem for a hyperbolic PDE with backscattering data is considered. A globally convergent numerical method for this problem is presented. Analytical results are supported by computational ones.
متن کاملA globally convergent numerical method and adaptivity for a hyperbolic coefficient inverse problem
norwegian university of science and technology trondheim, norway A globally convergent numerical method for a multidimensional Coefficient Inverse Problem for a hyperbolic equation is presented. It is shown that this technique provides a good starting point for the so-called finite element adaptive method (adaptivity). This leads to a natural two-stage numerical procedure, which synthesizes bot...
متن کاملA Globally Convergent Numerical Method for Some Coefficient Inverse Problems with Resulting Second Order Elliptic Equations
A new globally convergent numerical method is developed for some multidimensional Coefficient Inverse Problems for hyperbolic and parabolic PDEs with applications in acoustics, electromagnetics and optical medical imaging. On each iterative step the Dirichlet boundary value problem for a second order elliptic equation is solved. The global convergence is rigorously proven and numerical experime...
متن کاملPicosecond scale experimental verification of a globally convergent algorithm for a coefficient inverse problem
A globally convergent algorithm of the first and third authors for a 3D hyperbolic coefficient inverse problem is verified on experimental data measured in the picosecond scale regime. Quantifiable images of dielectric abnormalities are obtained. The total measurement timing of a 100 pico-seconds pulse for one detector location was 1.2 nano-second with 20 pico-seconds (0.02 nano-second) time st...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems and Imaging
سال: 2022
ISSN: ['1930-8345', '1930-8337']
DOI: https://doi.org/10.3934/ipi.2021068